数学教育读后感(集合十四篇)
发表时间:2025-06-13当仔细品读一部作品后,你有什么总结呢?需要回过头来写一写读后感了。那么我们该怎么去写读后感呢?以下是小编精心整理的数学教育经典教学书籍读后感(精选14篇),希望能够帮助到大家。
数学教育读后感 篇1
刚刚听到这个书名的时候,我在想:很霸气的书名!但是,华应龙老师的名字早就如雷贯耳,他早就是我们耳熟能详的数学教育大师了。带着疑惑,我开始阅读这本书。
这本书的语言灵动幽默,整本书以教学案例、教学反思、教学感悟的方式呈现,没有枯燥的教学理念,而是一个个生动鲜活的'实例,贴合教学实际,可操作性强,而且让我们感受到数学教学的乐趣。这本书生动艺术地体现了新课程的理念——让学生学有价值的数学,学生活中的数学,遵循学生的思维发展途径,为学生提供了大量的观察、猜测、思考、操作、验证、自主探索和合作交流的机会,充分发挥学生的自主学习的能力,让学生主动探索感知,特别重要的是,华老师的每一节课、每一篇文章都体现出他对学生的人性的尊重、对数学教学的尊重。
华应龙老师对自己的课堂教学精益求精,他在教学《角的度量》一课前,反复思考:能否创设一种情境,让学生感受到量角的用处,他和同时反复研究探讨,连睡在床上都在思考,想出新方案后还不满足,思考是否有更合情理的设计,最终,创设了三个滑梯的'设计,既让学生感受到量角的重要性,又体现了“学习生活中的数学”的实践精神,华老师的对教学的这种近乎吹毛求疵的治学精神,不仅使他的每节课成为一种艺术品,而且使他成为名符其实的教育家。
华应龙老师说他很喜欢当堂评价学生,他举例说:“我们班42名同学,听完这节课,我欣赏39位同学的表现,会用眼睛听课,我最欣赏某甲同学,她的发言最有数学味道。她说得好是由于她肯动脑筋,能有条理地去想。”华老师说他这样评价学生的目的是想给学生树立一个数学学习的榜样。我看到这里,灵机一动,对呀,我们评价学生时能不能更具体一些,更准确一些,这样能让学生有更明确的目标。以前,我评价学生只是:“你说得真完整!”“你的回答很准确!”“某某同学请你认真听讲!”等等,现在,我在课堂上开始注意教学语言的准确到位、与教学内容的紧密贴合,如:“某某同学坐姿端正,专注地看着老师,最先进入学习状态,所以,今天这节课由他喊起立!”“某某同学想出了两种解题方法,学习数学就要这样,不满足于一种方法,不满足于一次成功,只有不停下探索、追求的脚步,才会不停地进步。”“某某同学,请你专心地看着屏幕,思考这道题目!”这些有明确指向性的评价,对于稍显懵懂的小学生来说,更具有指导意义,使我的课堂教学效率提高不少。
从华老师的书中,我感受到数学的美和魅力,我们的教学不能再满足于完成教学任务,学生学会某种知识或某种技能,最重要的是,要引领学生投入到数学的世界里,要让学生一步步地感受到数学的有趣和无穷的魅力,学生也用数学的思想去思考、去探索各种数学问题,不断地追求,这才是我们作为数学老师的终极目标。
读完全书,我为华老师对教育的深深热爱所感动,为他灵动的智慧、渊博的学识所叹服,为他对工作的负责、对学生的尊重所敬佩,他已经把自己看作了数学的代言人、教学的生命体,所以才会有“我就是数学”的宣言吧!
数学教育读后感 篇2
继续读《小学数学课程与教学》(杨庆余主编,中国人民大学出版社)的第十章第三节“规则学习与发展数学素养”。本次阅读我对培养学生“数感”的方法很感兴趣。
在上周的培训中,受邀专家不约而同地提到一个词——数学核心素养,而数感是数学核心素养之首。听到数感,我的理解是对人对数的感觉,通过阅读我对数感有了更科学的认识。所谓数感,指:理解数的意义,能用多种方法表示数,能在具体情境中把握数的大小关系,能用数来表达和交流信息,能为解答问题而选择适当的算法,能估计运算的结果,并能对结果的合理性做出解释。
发展儿童良好的.数感最主要的途径是结合生活实际,儿童认识数是在生活中通过对具体物体对象的活动来逐渐认识的,所以作为教师,我们应把学习活动置于儿童生活的实际情境之中,让他们去体验和感悟,从而形成对数的意义的理解,让儿童在实际情境中认识数,运用数。良好数感的一个重要方面就是具有一定的数的位置感、数之间的关系的敏锐反应和对数与数运算的实际意义的理解。如:55,学生看到这个数能较快地反映出55是100的一半多一点;它最接近的整十数是50和60;55是5个10和1个5组成的。
发展数感还可以将运算技能运用于实际情境。在教学中我们可以创设多种情境,通过儿童对各种数据的探究来逐步发展他们的数感,因为不同的数据显示着不同的位值特征和数的关系特征;可以鼓励学生采用不同方式去处理各种数据,以此来发展儿童的运算策略;可以通过对不同现象和结果的描述来发展儿童对数的意义的理解。
数学教育读后感 篇3
心理学对于我来说是一个熟悉又陌生的词语。说它熟悉,因为在上师范时就已经接触过这门学科,而且感觉在工作中也一直用着它。说它陌生,虽然一直在用,但又觉得掌握的不透彻。这个学期再次重温了《儿童学习心理与小学数学教学》,让我再次体会到特级教师张兴华的教学魅力。张兴华,著名特级教师。他长期从事小学教学实践,并在实践中进行数学教学心理研究,逐步形成了基于儿童学习心理的数学教学流派。
很多人认为,小学的数学嘛,应该没有什么高深的理论,也没有多大的科学道理可依,真正进行了数学教学之后我才发现,数学教学并不如他人想象中那么简单,而真正要教好数学更是需要付出一番努力。阅读了张老师的《儿童学习心理学与小学数学教学》,现在我进一步感到“小学数学教学”是一门专业性很强的学科,其中有太多的专业知识值得我们学习、钻研,有时觉得很简单的事物越是值得我们去研究!
这本书张老师从知识的形成和习惯、知识的巩固和深化、技能的形成与培养、智能的发展、解决问题、学生学习积极性的激发和培养,六个方面进行阐述,每一章节张老师都结合了具体生动的课堂教学案例,细致分析了小学生学习数学的心理规律,并对如何改进教学和提高教学效率,给出了切实可行的建议,读后收获良多。
刘墉先生在《中国学生的通病》一文里面提到:中国学生“好奇但不爱发问”“有问题往往拿去问同学,却不去问老师,因为他们怕自己的问题幼稚,惹得同学笑话;又怕问的东西简单,显得自己浅薄;还怕问得太多,让人觉得爱表现”。想想说得还很有道理,学生比较喜欢“老师发问他思考”。在高年级,甚至有个别学生喜欢“别人发问,别人思考,别人回答,我听听”的情况。那这些学生没有主动思考的习惯,喜欢被别人牵着走。在《儿童学习心理与小学数学教学》中,张老师说“发现问题更重要”。因为对“开发学生的智力,发展学生的思维,推动实施实施教育起着积极的作用”。
培养学生的问题意识是课堂教学的一项重要任务。问题的提出是求知者调动自己原有的知识储蓄,主动地、新颖的、独特的、个性感知的展示。美国衡量教育标准之一:把“没有问题”的学生教的“有问题”。若把老师问住就算成功。布鲁纳认为:“学习者不应是新信息的被动接受者,而是知识获取过程中的主动参与者。”爱因斯坦也认为:提出问题比解决问题更重要。因此,教师应该培养学生发现问题的能力。
学生从会发现问题到发现有质量的问题是一个逐步前行的过程,是需要进行长期指导,反复训练的。
1、提供发现问题的示范。
学生是从模仿开始的,如果教师善于提认知水平高的`问题,学生会以教师为榜样,发现的问题质量也较高。因此,教师要言传身教,不仅要鼓励学生发现问题,还要站在学生的角度,为学生的发现问题做出示范。长此以往,在教师的熏陶下,学生潜移默化,发现的问题自然不会表面化、肤浅化。
2、要发现得有价值。
问题的发现要“准”、要“精”。对认真思考能解决的问题就不需要提问,要鼓励学生对一些查阅资料也未能解决的问题进行多提问。在学生发现了有价值的问题时,教师不仅要及时的表扬,还要让学生将发现问题的过程与其他同学分享,让更多是学生能发现有价值的问题。
3、教师要起到好的指导作用。
学生发现的问题可能在表述上不够准确,在把握上可能也不够精准。此时,教师要进行适时地点拨,指导学生把握关键。在学生闪烁思维火花,却是“雾里看花”时,教师的启发会带来令人意想不到的效果。课堂中,教师要善于捕捉学生思维中闪亮的火花,积极引导,把这些有价值的问题应用于课堂教学,为促进课堂更精彩的生成服务。
书好似读完、看完,但我仍有意犹未尽的感觉。书中谈到的每一个知识点都值得我们再次回味,再次思考。惟有反复不断的阅读,细细体会,用理论联系实际,用理论指导实践,才能更多地理解儿童,走近儿童,走进儿童的心理。
数学教育读后感 篇4
我读了《趣味数学》后,深有感触。
这本书讲了吉米和安可两位可爱的孩子找到了一本有魔法的书,它带他们漫游数学世界。在数学世界里,他们结识了小数点,又结识了加,减,乘,除四位兄弟,并学会了四则运算。在抢救小数点时,又学会了自我拷贝数等数学知识,最后终于救出了小数点。
《趣味数学》的数学知识很奥妙,常常令人弄不懂,自我拷贝数我一点儿也不明白是怎么回事,于是只得去请教妈妈。吉米他们的知识真丰富啊!但他们不是生来就有的,而是通过智慧得来的。在数学世界里,他们虽然有时搞不懂,但是能巧妙的运用老师上课教的知识来通过一道道关卡,最终获得知识。我真应该向他们学习知难而上的精神!
《趣味数学》这本书真好!
数学教育读后感 篇5
在大学初学《数学史》时,我便对数学史产生了浓厚的兴趣,并由此爱上了数学这一学科。工作后,我成为了一名数学教师。我常常在想,如果能够把数学文化融入到课堂中来,那是一件多么有意思的事。于是,我仔细研读了《数学文化》一书,获益颇多。
众所周知,数学是人类文明的一个重要组成部分。最初牙牙学语地创造丰富多彩的记数制度,然后在花季雨季之中为数学建立越来越多、越来越详尽的分支,到如今,展现它花样年华之时耀眼夺目的数学成果。与其他文化一样,数学科学也是集齐了几千年人类智慧的结晶。
读完《数学文化》,心底不由得一阵感动。那是一种什么感觉呢?是一个对数学有着宗教般虔诚的仰望者的心动,是一个对历史有着无尽探索欲望的追求者的向往。每一代人都在数学这座古老的大厦上添加一层楼。当我们为这个大厦添砖加瓦时,有必要了解它的历史。
通过这本书,我对数学发展的概况有了一个较为全面的了解。书中通过生动具体的事例,介绍了数学发展过程中的若干重要事件、重要人物与重要成果,让我初步了解了数学这门科学产生与发展的历史过程,体会了数学对人类文明发展的作用,感受到了数学家严谨的治学态度和锲而不舍的探索精神。
数学教育读后感 篇6
克莱因是美国当代数学家、数学史家、数学教育家。克莱茵用了39章的篇幅介绍了古今思想,从数学的起源到代数几何中的“曲面的代数几何”。
让我们看一看20世纪人们对这门学科的态度。首先,数学主要是一种寻求众所周知的公理法思想的方法。这种方法包括明确地表述出将要讨论的概念的定义,以及准确地表述出作为推理基础的公理。具有极其严密的逻辑思维能力的人从这些定义和公理出发,推导出结论。数学的这一特征由17世纪一位著名的作家在论及数学和科学时,以某种不同的方式表述过:“数学家们像恋人……承认一位数学家的最初的原理,那么他由此将会推导出你也必须承认的另一结论,从这一结论又推导出其他的结论。”
如果数学的确是一种创造性活动,那么驱使人们去追求它的动力是什么呢?研究数学最明显的、尽管不一定是最重要的动力是为了解决因社会需要而直接提出的问题。商业和金融事务、航海、历法的计算、桥梁、水坝、教堂和宫殿的建造、作战武器和工事的设计,以及许多其他的人类需要,数学能对这些问题给出最完满的解决。在我们这个工程时代,数学被当作普遍工具这一事实更是毋庸置疑。
数学的另外一个基本作用(的确,这一点在现代特别突出),那就是提供自然现象的合理结构。数学的概念、方法和结论是物理学的基础。这些学科的成就大小取决于它们与数学结合的程度。数学已经给互不关联的事实的干枯骨架注入了生命,使其成了有联系的有机体,并且还将一系列彼此脱节的观察研究纳入科学的实体之中。
进行数学创造的最主要的驱动力是对美的追求。数学,如果正确地看它,则具有……至高无上的美——正像雕刻的美,是一种冷而严肃的美,这种美不是投合我们天性的'微弱的方面,这种美没有绘画或音乐的那些华丽的装饰,它可以纯净到崇高的地步,能够达到严格的只有最伟大的艺术才能显示的那种完美的境地。一种真实的喜悦的精神,一种精神上的亢奋,一种觉得高于人的意识——这些是至善至美的标准,能够在诗里得到,也能够在数学里得到。
除了完善的结构美以外,在证明和得出结论的过程中,运用必不可少的想像和直觉也给创造者提供了高度的美学上的满足。如果美的组成和艺术作品的特征包括洞察力和想像力,对称性和比例、简洁,以及精确地适应达到目的的手段,那么数学就是一门具有其特有完美性的艺术。
尽管历史已清楚地表明,上述所有因素推动了数学的产生和发展,但是依然存在着许多错误的观点。有这样的指责(经常是用来为对这门学科的忽视作辩解的),认为数学家们喜欢沉湎于毫无意义的臆测;或者认为数学家们是笨拙和毫无用处的梦想家。对这种指责,我们可以立刻作出使其无言以对的驳斥。事实证明,即使是纯粹抽象的研究,也是有极大用处的,更不用说由于科学和工程的需要而进行的研究了。圆锥曲线(椭圆、双曲线和抛物线)自被发现两千多年来,曾被认为不过是“富于思辨头脑中的无利可图的娱乐”,可是最终它却在现代天文学、仿射运动理论和万有引力定律中发挥了作用。
实用的、科学的、美学的和哲学的因素,共同促进了数学的形成。把这些做出贡献、产生影响的因素中的任何一个除去,或者抬高一个而去贬低另外一个都是不可能的,甚至不能断定这些因素中谁具有相对的重要性。一方面,对美学和哲学因素作出反应的纯粹思维决定性地塑造了数学的特征,并且作出了像欧氏几何和非欧几何这样不可超越的贡献。另一方面,数学家们登上纯思维的顶峰不是靠他们自己一步步攀登,而是借助于社会力量的推动。如果这些力量不能为数学家们注入活力,那么他们就立刻会身疲力竭,然后他们就仅仅只能维持这门学科处于孤立的境地。虽然在短时期内还有可能光芒四射,但所有这些成就会是昙花一现。
克莱茵用了这么大的精力来写作《古今数学思想》其意图是什么呢?如果把他与我国的司马迁相比较,会发现,司马迁只是忠于事实,作好历史备查,供后人对历史评价,从中提示当朝少犯错误,少走弯路地发展社会。而克莱茵从一开始就带了写作观点,明确地表达出:数学是来源于人类在生活、生产、劳动中实际需要之必然。数学的发展并不是一帆风顺的,而是要与各种上帝和霸权势力及悲观思想的斗争中发展前进的。所以说克莱茵的写作真实意图在于鼓励人们不断地克服各种干扰积极勤奋地发展数学,相信数学能给人类社会的发展带来巨大的作用。
我们人类社会的生活、生产、科研是绝对离不开数学的运用。数学的发展会给人类社会的发展带来巨大的扛杆作用。千万不能小瞧这根扛杆。在学校各科教学中,多数学生最容易掉队的首先就是数学学科。尽管如此,我们的文理科高考还是统有数学科。这保证了数学的社会普及性需要。我们作为数学数学教师,更是重担在肩,知难也进,义不容辞地做好本职工作。
数学教育读后感 篇7
这个书本来是在网易阅读的app中下载的,那时候刚刚看完《拖延心理学》,受益很多,于是下载了这本书。一直没看,今天拿起手机百无聊赖,翻看了几页之后居然就无法停下来了。
本书的关键词:
多重人格;恋物癖;社交恐惧症;特定对象恐惧症;本我、自我、超我;潜意识;广场恐惧;幽闭恐惧;密集恐惧;厌食症;贪食症;性别认定障碍;精神分裂;强迫症;人格障碍;物质成瘾;恋童癖;露阴癖;梦的解析。
我的获益:
1、澄清了很多认识上的误区。如多重人格和人格分裂的区别;如厌食症其实并不是没有食欲等。
2、书中大量的事例,给我很大的阅读快感。
特别好玩的.地方:
我觉得书中最好玩的地方是第18章,也就是最后一章,对梦的解析。
书中总结了四条:
1、梦是愿望的满足。
2、梦是睡眠的保护者
3、梦是一种幻觉体验
4、梦是有伪装的
觉得好玩的原因是自己一直对梦感兴趣,但是从来么有总结过,或者试图总结过。这几条一看到就觉得眼前一亮。
最后,书里还有很多好玩的小知识,比如人的犯罪基因;梦到飞行其实是把自己整个人当成了性器官;绝大多数的自杀事件都发生在凌晨4点48分等。
数学教育读后感 篇8
这几天,我读的最有意思的数学读物是《马小跳玩数学》,这本书上的内容有的我没有学过,但有的我也一眼就能看出来,比如数学嘉年华那儿那个找规律,1、3、5、7()、(),这么简单的规律书中的主角马小跳却还要抓耳挠腮、冥思苦想呢!我心里头不仅发出一阵欢笑:“哈哈!原来马小跳还没我厉害呢1还有,我在这上面还学了一个特别特别好玩儿的游戏,这个游戏需要一个计算机,还有你的动手能力。
例:12(我的出生月份)x2,+3,x50=1350。再+8(8是自己现在的岁数。)=1358。然后再-150=1208。这个得数前面的12,就代表12月出生。后面的08,就代表现在自己是8岁。这是我用我自己举的例子,同学们也可以算算自己呀。
我觉得这本书不仅有趣,还能从中学到很多知识,真是两全其美啊!
数学教育读后感 篇9
在这个寒假,我阅读了一本名叫《这才是好读的数学史》这本书叫这个名字确实是名副其实,他为人们介绍了最全面的数学史,以及名人与数学之前的故事,还有各国数学的起源到发展。
数学的形状和名称以及关于计数和算数运算的基本概念似乎是人类的遗产。早在公元前500年,数学就出现了,随着社会的不断发展,就需要一些方法来统计拖款欠税的数额等等,这时候数学就开始出现了。那时候的古埃及人用墨水在纸草上书写这种,这种材料是不易保存数千年的。大多数埃考古家挖掘的石头都是在神庙和陵墓附近,而不是在古城遗址。因此我们只能通过少量的资料来考察古埃及的'数学发展史。
许多古代文化发展了各式各样的数学,但是希腊数学家们是独一无二的,他们将逻辑推理和证明摆在数学的中心位置。希腊数学传统的保持和发展一直延续到公元400年。我们了解的希腊数学最早是欧几里得的《几何原本》,可我们也只了解这一本著名的书。希腊数学的优势便是几何,尽管希腊人也研究了整数,天文学,力学。但是根据古希腊几何学史学家的说法,最早的希腊数学家是600年前的泰勒斯,毕达哥拉斯都要比他晚一个世纪,当记录历史时,泰勒斯和毕达哥拉斯都成为了远古时期的神话级人物。
又在20世纪初,希伯尔特提出了一系列重要问题,又在21世纪开始在克莱数学学院的带领下,选择7个数学课题,并且提供的100万美金来解决每一个问题数论则是另一个发展方向。正如我们的数学概念小史中解释的,费马的最后定理在1994年得到了证明。
在今天的数学中涉及了许多不同的领域,所以我们要好好学习数学,并且多看有关数学的书,才能使我们的数学成绩突飞猛进。
数学教育读后感 篇10
创新教育是指更新观念,把创新素质的养成和学生日常学习、生活结合起来,从不同层次、不同方向、不同内容上采取不同的手段和方法,把培养学生的创新意识与创新能力贯穿于素质教育实施和每一个学生个体成长的全过程。可见,创新教育是将素质教育落到实处的关键所在。
在具体的数学教学过程中,我注重了学生创新能力的培养,下面是我在教学中实施创新教育的几点体会:
一、数学教师的创新意识是培养学生创新能力的首要条件
教育本身就是一个创新的过程,教师必须具有创新的意识,改变以知识传授为中心的教学思路,以培养学生的创新意识和实践能力为目标,从教学思路到教学方式上,大胆突破,确立创新性教学原则。现代心理学的研究表明,认知和情感密不可分,教师本身的情感现状,对学生起着潜移默化的作用,使课堂上出现某种心理气氛,当一位有威信的、受到学生尊敬和喜爱的教师走进课堂时,学生就会兴趣盎然,精神饱满,反之,学生的心理就会蒙上一层阴影,情绪就相当低落。在近几年的教育教学过程中发现,中规中矩的教学模式遏制了学生的创新意识和创新能力的发展,使得学生的学习是一种机械化的学习,久而久之对数学就丧失了兴趣和信心。
-
65in.com小编精心推荐:
- 目送读后感 | 镜读后感 | 雷雨读后感 | 《金锁记》读后感 | 小学数学读后感10篇 | 小学数学读后感10篇
二、创设问题情境,激发创新思维
主动性的心理特征,就是积极地开展思维活动,真正的“课堂气氛活跃”是指学生思维活动活跃,而不是表面热闹。乌申斯基说过:“没有丝毫兴趣的强制学习,将会扼杀学生探求真理的欲望。”恰当创设情境,能够激发学生的学习兴趣,他们的创新意识就会孕育而生。例如:在讲“平行线的判定”时,可以提问:“如果有两条直线,这两条直线是不是平行线?如何作出判断?”教师同时在黑板上画出两条看起来不相交的直线,让学生作出判断,学生可能会不假思索的判断为平行线,教师再提出疑问:“能肯定地说这两条直线是不相交的直线吗?我们现在看到的部分是不相交的,但能肯定在远处也不相交吗?”这一问便使学生陷入思考,学生会对自己先前的判断产生动摇,看到了单凭定义去进行判断是困难的,由此激发思维的积极性,自觉去探索判断两直线平行的判定方法。
三、把数学和现实生活联系起来,培养学生创新意识
数学知识在日常生活、中都有广泛的应用,而大部分学生因看不到数学和现实生活的联系而失去兴趣,因此在平时的教学过程中,善于抓住日常生活、生产的点点滴滴,构建基本的数学关系,使学生在一种轻松、愉快的环境中解决数学问题其实,实际生活中的许多问题都可以用课本中的知识来解决,关键是让学生通过观察、操作、思考、交流和运用,逐步形成良好的数学思维习惯。
数学教育读后感 篇11
在我的心目中,《小学数学教师》就是我的良师。我和它的相识源于我实习时候的师傅老师,她订书了这本书,看得很投入,便推荐给我看。书中的一些新的教育信息、新的教育理念、新的教育教学方法,对我今后的教学帮助很大。
做为一名小学数学教师,我更加希望能在教学方面得到一些切实具体的帮助,《小学数学教师》将怎样处理教材难点,怎样设计创造性教学方案等都为我们想到了。《小学数学教师》不仅有吸引人的故事,闪光的教育思想,精妙的育人艺术,还让我认识和了解到教育界的精英人物及他们先进的教育理念,从他们的教学中学习先进的教育手段,慢慢运用到自己的教学工作中。
《小学数学教师》滋润了无数数学教师的茁壮成长,也为许许多多的青年数学教师架起了走向成功的桥梁,是培育教师成长的摇篮。她的风格十分朴素平实。她的百家讲坛特吸引人,教学点评忠恳,教案设计新颖,教学随笔精致。她贴近教改前沿,是小学数学教改的冲锋号。
《小学数学教师》宣扬对学生做为“人”的尊重;宣扬对学生生命的唤醒与赏识;宣扬人格平等基础上的情感交流;教育我们用心灵感受心灵,用生命点燃生命,用智慧开启智慧。因此,每当我竭尽所能地传授知识给学生却看到学生似懂非懂的目光时,我都能从《小学数学教师》中再次找寻到信心的起点;每当遇到教学中我自己也弄不太清、搞不太懂的知识时,《小学数学教师》为我解决了燃眉之急;每当我想在教学上有所突破、有所创新时,都是《小学数学教师》为我导航,让我有所创想,寻到教学的"亮点。
“一分耕耘,一分收获,”我一直坚信多读一些好书,一定会有许多意外收获,在这人生的黄金时间,我想我会一如继往地多读好书,在书的海洋中扬帆远航。
数学教育读后感 篇12
数学的发展史也就是科学发展的历史。最初牙牙学语地创造丰富多彩的记数制度,然后在花季雨季之中为数学建立越来越多、越来越详尽的分支,到如今,展现它花样年华之时耀眼夺目的数学成果。每一步都包含艰辛,渗透着无限的思考,在这期间,有多少人将自己的一生都奉献给了数学,给了这一门散发着无穷魅力的学科。
《数学史选讲》一书首先讲述了各种各样的记数方法,有象形文字中繁琐的数字记法,有楔形文字中造型独特的记数法,由中国古代简易的算筹记数,有玛雅以神的头像作为数字的奇异的记数法,还有沿用至今的印度—阿拉伯数码。从早期的记数制度演变中不难看出,就连数字的创造都是艰辛的,在那个时候,如何发明一种便于使用、耐于使用的记数法,是建立数学学科的至关重要的基础。可以说,若然没有了人类对数字以及记数制度这种最初的研究探索,力求创造出一种最为简易方便的记数法,往后数学的研究便加倍了曲折、加倍了困难。
而在漫长的数学发展史中,最重要的莫过于无数为此奋斗一生的数学家,因为有了他们的辛酸血泪,有了他们的严谨态度和锲而不舍的探索精神,才为数学打下了坚实的基础,从而给平面解析几何、微积分、无穷集合论等等的数学分支创造了诞生的机会。然而数学的发展史曲折的、艰辛的,数学家的研究里程更是如此。他们花尽一生的心思换来的创新思维和超时代理论,大多数在他们的有生之年都得不到世人的认同。希帕苏斯向毕达哥拉斯学派的其他成员发表他对不可公度性的发现时,惊恐不已的成员将他抛进了大海;伽罗瓦提出的强有力的群论多次提交给科学院,最终得到的却是“完全无法理解”的评论;创造惊人的无穷集合论的康托尔最后带着诸多遗憾和无限的苦闷离开了人世;最怀才不遇的便是中学数学家阿贝尔,他经过无数努力最终证明了千古谜题——五次或以上的代数方程没有一般的求根公式,却遭到了一系列的冷遇,就连“数学王子”高斯看到论文的题目只说了一句“太可怕了,竟然写出这种东西来!”便连其正文都没看就把论文扔到了书堆里,尽管当时柏林大学已经认识到他的才华并任命他为数学教授,但阿贝尔早已在病魔侵袭的凄凉中与世长辞了。
尽管如今他们的理论得到世人的称赞,但在当初他们却受尽嘲笑与唾骂,他们不像当时就闻名于世的数学家那样,一有新的理论产生便受到全世界的重视,然后在钦佩与荣耀的光芒下继续他们的研究。虽然如此,他们仍旧坚定不移地相信自己,为自己的数学事业独立奋斗,深入探索,进一步发展和完善自己的理论。就如康托尔那番充满信心的话语:“我的理论坚如磐石,任何想要动摇它的人都将搬起石头砸自己的脚。”这种自信与坚定无不让人敬佩。
而许多的数学家都有一个共同点,就是他们的知识层面除了数学以外,还有其他的多个领域。譬如,泰勒斯是古希腊最早的数学家、哲学家,他几乎涉猎了当时人类的全部思想和活动领域;费马有丰富的法律知识,精通多门语言;莱布尼茨学习了拉丁文、希腊文、修辞学、算术、逻辑、音乐,还广泛阅读并研究了大量哲学和科学着作;在欧拉的工作中,数学紧密地和其他科学的应用、各种技术应用以及公众的生活联系在一起,它常常为解决力学、天文学、物理学、航海学、地理学、大地测量学、流体力学、弹道学、保险业和人口统计学等问题提供数学方法。由此可见,想要获得在一个学科的研究的成功,不仅需要精通该学科的知识,还需要学习其他学科、领域的知识,综合运用,才能更好地让这些知识为自己的研究服务。
自信、坚定、还有多领域的知识固然重要,但老师对他们的帮助也不可多得。牛顿在巴罗教授的课程中得到研究流数的灵感,欧拉继承微积分权威约翰·伯努利的衣钵成为“分析的化身”,阿贝尔在老师霍尔姆伯的鼓励与指导下,破解了五次或以上代数方程公式求解的未解之谜,伽罗瓦被里查德教授发现为千里马,成为了群论的开山祖师,康托尔师从库默尔、魏尔斯特拉斯和克罗内克等着名数学家,创立了无穷集合论,而华罗庚更是当年被熊庆来发掘,如今他又发掘了陈景润。一位伟大的数学家背后往往有一位劳苦功高的老师,也许他们的老师如今已不为人所知,但他们所做出的努力与教导并不亚于这些数学家,正因有了他们耐心的教导,给予的莫大支持、鼓励,才给了他们展露锋芒的机会,而这些数学家虚心从师的精神也值得我们学习、效仿。
除此之外,从数学家的努力探索之中,我们可以发现数学研究所必需的过程。首先,要从细微的事情中发掘数学的道理、发现问题的存在,又或是对某一问题产生莫大的兴趣与研究精神。这一步许多人都能做到,就像牛顿对一个掉下来的苹果做出思考,从而创造万有引力定律一样,在我们的日常生活中,我们都能对一些平常事物提出问题,在遇到一些难题的时候有种想攻破它的冲动。然后,必须锲而不舍地做出深入的探究。这一步往往只有少数人能够做到,但这偏偏就是最重要的一步,缺乏了它,前面的一切苦劳都只是白费。在遇到困难面前,依然能够怀有当初的冲动与勇气想要征服它的,往往就是伟大的开始、成功的关键。但只有这份冲动与勇气是不够的,一位伟大的数学家,还必须拥有创新的精神,有对人们根深蒂固思想做出怀疑的精神,勇于打破个人崇拜与教条主义,创造出自己的新思想,就像笛卡儿对坐标系的建立,牛顿和莱布尼茨对微积分的创立,高斯对非欧几何的确立,伽罗瓦对群论这一新概念的创造,康托尔对无穷集合论的坚信等等,他们之所以能够成为受万人瞩目的数学家,是与他们的创新思维分不开的。
总的来说,这些数学家成功的经验教会了我们学生在现阶段应如何做好准备,迎接未来的挑战。在思想上,我们应该培养创新思维、自信心、对自我坚定的信念、以及面对困难毫不畏惧的精神。在行动上,要虚心从师,不耻下问,积极学习多方面的知识,做到对知识的融会贯通,运用到日常生活的事情中。
“刘徽的割圆术比古希腊的穷竭法要晚几百年”、“笛卡儿和费马不约而同、殊途同归地建立解析几何”、“牛顿和莱布尼茨两位奠基人不约而同的努力,使得微积分作为一门独立学科建立起来”……在数学史的发展历程中,不少相同的研究成果都重复地被人类发掘,这种数学研究的时间差无疑耽误了数学的发展,重复地为同一个问题而努力,却不知道事实上他人早已解决,如果世界能够更早地融合为一体,便能更好地互相交流数学文化,共同研究、共同进步,那么就不需要花上几百年甚至更长的时间重复地走同一条弯路,而能更快地推动数学的发展,也许世界数学的发展速度就不只现在的步伐了。
而此书也提到了数学创立的一个条件:“在实用的技术发明之后,那些并不直接为生活的需要或满足的科学才会产生出来。它首先出现在人们有闲暇的地方,数学科学最早在埃及兴起,就是因为那里的祭司阶层享有足够的闲暇。”这说明了“闲暇”对于科学兴起的重要性。的确,当温饱问题没有解决,脑力劳动与体力劳动尚未分开时,人们无暇去发明科学,只有当享有闲暇时,人们才有足够的时间与精力花费在科学的创造中,才会从最初的玩弄数字起,逐渐深入探究,从生活琐事中发现数学的问题,从而创造谜题,再去解决,这样一步步地走来,才会有如今的数学学科。要是没有了闲暇,很可能就没有了后面的一切。同样,作为学生的我们也需要空出闲暇来认真研究数学,如果连每天的作业都难以按时完成,那么还哪说得上去破解数学的难题呢?
数学的发展还很长久,还有许多路要走,我们就像牛顿说的那般,只不过是在海边玩耍的小孩,在我们面前仍有一片未知的真理的海洋,数学的无穷魅力就埋在这里面,等着我们去发掘,等着我们去探索。
数学教育读后感 篇13
当前高一数学教学方面存在着一些认识上的误区,主要表现在学生的学习态度和方法上没有摆脱初中阶段对数学学习的认识,学生普遍学习兴趣不高。由此提出了几点看法和做法。
作为一名数学教师,在高一年级的一年教学过程中,通过不断的学习和钻研教育教学方法,以及与广大同学的接触交流,了解到许多学生甚至教师在教学中存在不少认识上的误区,主要有以下几项体会。
第一、高一年级的学习阶段标志着学生学习进入了一个新的时期,在学习的方法上,学习的认识上,学习的深度上与初中阶段的数学学习完全不同,但是从学生的角度讲,普遍学习兴趣不高。学生自认为初中数学成绩不错,没有必要投入更多的精力也可以轻松地完成数学课程学习,上课也好,作业也好,时常不认真对待,马虎应付,主动性差。真实的情况是,高中数学学习不仅仅是把初中知识再加热,而是从一个更新的角度的学习,把仅仅停留在模仿阶段的学生的知识,从理解联系的角度更新诠释,进而训练学生的逻辑思维,进行探究性的学习,使学生脱离机械记忆的层面,开始学会在逻辑思考的前提下用联系的观点来看问题。
第二、对学生来讲,初中的数学学习的机械记忆方法,存在着学习的惯性,依然影响了学生的学习方法。到了高一阶段,大部分学生的学习习惯,仍然停留在单纯的机械记忆的层次上,难以适应高中的数学学习,很多学生对我讲,平时花费了相当多的时间背,记数学知识,可考试成绩还是不见长进,不知道为什么?显得很苦恼,学习的兴致一天天被消磨掉了。
因此,我深刻体会到,高中数学教师除了把数学知识传授给学生以外,更加重要的责任是逐渐诱导改变学生的学习习惯,使其自觉或不自觉走到高中数学教学所要求的轨道上来。
通过教学实践,我个人认为:
第一、高一数学教学以培养学生的学习兴趣、逻辑思维能力和情感态度为教学目标,为高二时期的学习打下良好基础。
第二、拓展课堂教学内容,增加课外知识加强相关的知识模块教学。
数学教育读后感 篇14
读完《这才是好读的数学史》之后,我最想表达的就是对数学悠长的历史的感叹,这本书让我了解到从3.7万年前到现在21世纪的数学的发展与进步,也明白了数学在生活中的重要性。
下面我将介绍几点我印象最深刻的内容:
在书中第一章:开端中介绍了四大文明古国的数学文化,包括当时的人们用什么材质的东西来记录数学,用数学干什么以及保存情况如何。在这一章讲述古巴比伦的数学是写了他们数学中几个特征,包括以60的幂表示数字,所以接近4000年后的今天为什么仍然把一小时分成60分,把一分钟分成60秒。在这一章中也讲了我国古代的数学文化,在书中介绍了《算经十书》《九章算术》等中国古代的数学经典,由于种种原因导致当时的数学文化的`损失,但作者实事求是,没有写一些没有历史根据的东西,再一次让我感受到这本书的严谨。
书中是按国家的顺序进行安排的,因为如果按时间顺序安排的话,很容易弄混淆,作者按照时间线上在某个时间点上最重要的事情的国家来安排,体现了本书“好读”的特点。
在书中有一个细节让我注意,每一章最后都会有一段来推荐一些关于本章内容更详细的讲解的书目,甚至详细到了具体在哪一章,在书的最后把对应的书名写了出来(虽然是英语的,我看不懂)从中可以看到作者对待数学的严谨和细致。
我非常喜欢在书中的一句话“学习数学就像认识一个人一样,你对他(她)的过去了解的越多,你现在和将来就能越理解他(她),并与其互动。”这句话感觉就像说中了我的感受,我认为阅读完之后,自己不仅会对数学更有兴趣,而且在以后学习数学的时候更加认真对待。
-
欲了解数学教育读后感网的更多内容,可以访问:数学教育读后感